
1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3088118, IEEE
Transactions on Visualization and Computer Graphics

1

Mesh Total Generalized Variation for Denoising
Zheng Liu, Yanlei Li, Weina Wang, Ligang Liu, and Renjie Chen†

Abstract—Recent studies have shown that the Total Generalized Variation (TGV) is highly effective in preserving sharp features as
well as smooth transition variations for image processing tasks. However, currently there is no existing work that is suitable for applying
TGV to 3D data, in particular, triangular meshes. In this paper, we develop a novel framework for discretizing second-order TGV on
triangular meshes. Further, we propose a TGV-based variational method for the denoising of face normal fields on triangular meshes.
The TGV regularizer in our method is composed of a first-order term and a second-order term, which are automatically balanced. The
first-order term allows our TGV regularizer to locate and preserve sharp features, while the second-order term allows our regularizer to
recognize and recover smoothly curved regions. To solve the optimization problem, we introduce an efficient iterative algorithm based
on variable-splitting and augmented Lagrangian method. Extensive results and comparisons on synthetic and real scanning data
validate that the proposed method outperforms the state-of-the-art visually and numerically.

Index Terms—Mesh denoising, total generalized variation, augmented Lagrangian method, total variation, normal filtering

F

1 INTRODUCTION

M ESH denoising is one of the most fundamental re-
search topics in geometry processing. With the rapid

development of 3D scanning devices and depth cameras, it
has become increasingly popular and common to acquire
and reconstruct meshes from the real world automatically
[1]. However, the acquired meshes are inevitably contam-
inated by noise because of local measurement errors in
the scanning process and computational errors in the re-
construction algorithm used. Noise not only degrades the
quality of meshes, but also causes problems in downstream
geometry processing applications [2]. Thus, mesh denoising
has been a widely studied topic in recent years, whose
main purpose is to remove noise while recovering geometric
features as accurately as possible [3]. However, noise and
geometric features are both of high frequency information,
which makes it challenging to distinguish them from noisy
input, especially in the presence of large noise.

To suppress noise while preserving geometric features,
various mesh denoising methods have been investigated,
including filtering-based methods [4], [5], [6], variational
methods [7], [8], [9], [10], [11], [12], nonlocal-based methods
[13], [14], [15], data-driven methods [3], [16], [17], [18],
etc. Among them, variational methods have attracted much
attention, as they can well preserve sharp features while
suppressing noise significantly.

The variational method usually consists of a regulariza-
tion term and a fidelity term. The total variation (TV) regu-
larizer is known for its excellent edge-preserving capability
in image processing, and it has been extended by Zhang et
al. [8] to restore the face normal field for triangular meshes.
However, as the TV regularizer uses the first-order operator,
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it tends to transform smooth transition variations into piece-
wise constant ones. Hence, the TV regularizer often suffers
from staircase artifacts in smooth regions. These artifacts
degrade the visual quality of the denoised result, which may
induce false features that do not exist in smooth regions. To
reduce the undesired artifacts from TV, several higher-order
regularizer [19], [20] have been proposed. They can preserve
geometric features and simultaneously prevent staircase
artifacts. Unfortunately, when the noise level is high, these
higher-order method may blur geometric features in varying
degrees. To address these issues, it is natural to combine
the first- and higher-order terms. For example, Zhong et al.
[21] proposed a variational method, which combines a first-
and a higher-order terms directly. Although their method
performs better than TV, it still has some artifacts near sharp
features and flattens fine details more or less. Thus, although
some variational methods have been introduced, it is still
challenging to find one regularization technique, which can
effectively preserve sharp features in some parts of the
surface while simultaneously recovering smooth regions in
other parts.

Recently, the total generalized variation (TGV), proposed
by Bredies et al. [22], has become one of the most popular
regularization technique in image processing. TGV is com-
posed of polynomials of arbitrary order, which can recon-
struct piecewise polynomial functions with automatically
balanced first- and higher-order variations rather than using
fixed combination [23], [24]. TGV can be interpreted as com-
bining smoothness from the first-order up to arbitrary order
variations. It preserves sharp features via the first-order
variations while effectively approximates smooth transition
regions via the higher-order variations. As a result, it does
not produce staircase artifacts. For most signal processing
tasks, we believe that the second-order variant of TGV is
sufficient. The reason is that most signals can be approxi-
mated with piecewise linear functions, and relatively it is
more difficult to discretize higher-order TGV. Therefore, in
this work, we focus on the second-order TGV, and we refer
TGV in particular to its second-order version throughout the
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paper.
It is non-trivial to extend typical methods for 2D image

processing to 3D mesh data because of the inherent data
irregularities in meshes. To the best of our knowledge,
despite that TGV has achieved great success in image pro-
cessing (e.g. image restoration [22], depth upsampling [23],
speckle reduction [25], texture decomposition [24], image
reconstruction [26], [27]), currently, there is no existing work
that applies TGV to triangular meshes. In this paper, we
develop a numerical framework to discretize TGV over
triangular meshes. Based on this discretization, a vectorial
TGV regularizer is proposed for face normal field. Then, we
introduce an efficient and effective algorithm to solve the
problem. The main contributions of this work include:
• We define necessary discrete operators and further use

these operators to apply TGV to triangular meshes. To
the best of our knowledge, this is the first numerical
framework for discretizing TGV on triangular meshes.

• We present a normal filter using TGV-based regular-
ization. Our method is able to preserve sharp features
and recover smooth regions, while preventing unnatu-
ral artifacts. We solve the optimization problem using
variable-splitting and augmented Lagrangian method.

• Qualitative and quantitative experiments on synthetic
and scanned data show that our denoising method per-
forms favorably against the state-of-the-art methods.

The rest of this paper is organized as follows. A brief
survey of mesh denoising methods is presented in section
2. Section 3 recalls TGV in image processing. Section 4
presents the numerical framework for discretizing TGV and
its vectorial version for meshes. In section 5, we propose a
vectorial TGV based face normal filter, and we introduce an
augmented Lagrangian method for solving the optimization
problem. Section 6 shows the results of our TGV-based
method and further compares it to the state-of-the-art meth-
ods visually and quantitatively. Finally, we conclude with
remarks and discuss directions for future work in section 7.

2 RELATED WORK

Due to the abundance of mesh denoising methods in the
literature, it is beyond our scope to review all existing work.
In this section, we review four categories of research that are
most relevant to this work.

Filter-based methods. The spatial filtering methods first
compute filtering weights based on signal similarities, and
then average the neighboring signals in each local region
with the computed weights. Early spatial filtering methods
directly adopt isotropic smoothing [28], [29] or anisotropic
smoothing [30], [31], [32], [33], [34] to mesh vertices in order
to remove noise. Although anisotropic methods are more
robust against noise compared to the isotropic smoothing
methods, they are still unable to preserve geometric features
in the case of heavy noise.

Recently, it has become so widespread with normal fil-
tering followed by vertex updating that it could arguably re-
place direct vertex position smoothing [4], [35]. Zheng et al.
[5] applied the bilateral filter to face normal field. Although
their method preserves geometric features, it may blur sharp
features when the noise level increases. To address this
problem, Zhang et al. [36] introduced a bilateral normal

filter based on a well-designed guidance normal field. Later
on, Zhang et al. [37] proposed a scale-aware normal filter
using both static and dynamic guidance. Yadav et al. [38]
proposed a normal filter based on tensor voting and binary
optimization. Furthermore, Yadav et al. [39] developed a
normal filter in the robust statistics framework that can
preserve sharp features, but may smooth weak features and
fine details. Arvanitis et al. [40] introduced a coarse-to-fine
framework for the restoration of face normal field based
on graph spectral processing. Zhao et al. [41] presented
a feature-preserving normal filter, by first computing the
guidance normal field using the graph-cut scheme, and then
performing normal filtering using the guidance field.

Variational methods. For mesh denoising, variational
methods aim to find and apply appropriate priors in order
to formulate the denoising process as an optimization prob-
lem. Based on the prior that geometric features are sparse
over the underlying surface, sparse regularizers are typi-
cally applied in the variational methods for the recovering
of geometric features.

He and Schaefer [42] and Zhao et al. [43] applied the `0
minimization to triangular meshes based on the piecewise
constant prior. These `0 minimization methods achieve im-
pressive results in preserving sharp features, but inevitably
flatten weak features because of their high sparsity require-
ment. Moreover, since the `0 minimization is a NP-problem,
the computation is time consuming. Another popular sparse
regularizer is the total variation (TV) minimization, which
essentially imposes the first-order `1 quasi-norm. Zhang et
al. [8] extended the TV regularizer for restoring the face
normal field. A commonly known drawback of the TV
regularizer is that it tends to produce staircase artifacts in
smoothly curved regions. To address this problem, higher-
order methods [19], [20] have been introduced, which can
prevent producing staircase artifacts. Unfortunately, when
noise level increases, these high-order methods tend to blur
fine details and curve sharp features. Another technique [21]
for reducing staircase artifacts is to combine a high-order
term with the TV term. This straightforward combined
technique reduces staircase artifacts to some extent, but
unnatural artifacts may still appear around sharp features.
Thus, it is still challenging to preserve sharp features while
simultaneously recover smooth transition variations.

Nonlocal-based methods. Most of the above-mentioned
variational methods are local (using local operators to for-
mulate the problem). Based on the observation that pattern
similarity may exist on the underlying surface, several re-
searchers introduced nonlocal methods [13], [14], [15], [44].
These nonlocal methods first group similar patches together,
and then perform a low-rank minimization on the patch
group to recover pattern similarity of the underlying sur-
face. These methods can effectively recover surfaces using
the pattern similarity prior. However, due to the multi-
patch collaborative mechanism, these nonlocal methods are
computationally intensive, and tend to blur sharp features.

Data-driven methods. More recently, data-driven meth-
ods are receiving increased attention. Wang et al. [16] pre-
sented their pioneer work with cascaded normal regression
(CNR) for face normal smoothing. Their method first learns
non-linear regression functions that map filtered normal
descriptors to those of the ground-truth counterparts, and
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then applies the learned functions to filter normals. In order
to better recover details, Wang et al. [3] and Wei et al.
[17] proposed a two-step denoising framework (denoising
followed by refinement). They first learn the mapping from
noisy meshes to their ground-truth counterparts for smooth-
ing face normals. Then, they recover details by learning
the mapping from the filtered normals to the ground-truth.
Later on, Li et al. [45] proposed a normal filtering neural
network, called NormalF-Net, which consists of a denoising
and refinement subnetwork. Li et al. [18] presented an end-
to-end convolutional neural network, named DNF-Net, to
predict filtered normals from the noisy mesh. The above
mentioned data-driven methods can produce satisfactory
denoising results using convolutional network. However,
the performance of these methods depends on the complete-
ness of the training data set. Moreover, the computation cost
of the training process for them is usually high.

3 BACKGROUND OF TOTAL GENERALIZED VARIA-
TION

Rudin, Osher, and Fatemi proposed the total variation (TV)
in their seminal work [46], and it has since started the trend
of applying variational methods for image processing. TV
has been widely used as a regularizer for edge recovering,
which are considered as the key features of images. For an
image u : Ω→ R, TV of u is defined as follows:

TV(u) =

∫
Ω
|∇u|. (1)

A commonly known drawback of TV is it tends to produce
staircase artifacts in smooth transition regions of the im-
ages, as TV favors solutions that are piecewise constant. To
address this problem, a more general variational method,
called total generalized variation (TGV), was introduced by
Bredies et al. [22]. In theory, TGV can be used to measure
image characteristics up to a certain order of differentiation.
As proved in [22], the first-order TGV is equivalent to
TV. Thanks to its higher-order nature, TGV can eliminate
staircase artifacts effectively. However, for TGV in an order
that is too high, it becomes difficult to discretize and com-
putationally expensive. Considering the trade-off between
computational complexity and numerical accuracy, we focus
on the second-order TGV in this work.

Given an image u, the second-order TGV of u is formu-
lated as

TGV(u) = min
v

{
α1

∫
Ω
|∇u− v|+ α0

∫
Ω
|ξ(v)|

}
, (2)

where α1, α0 ∈ R+ are weights, and ξ(v) = 1
2 (∇v + ∇vT )

denotes the distributional symmetrized derivative. The 2-
tensor v is converted into a vector by concatenating its
columns for computational convenience. In the following,
we give a more intuitive explanation for TGV. On one
hand, in smooth transition regions of u, the second-order
derivative ∇2u is small locally, and the optimum of (2) is
obtained by choosing ∇u ≈ v therein locally. On the other
hand, in regions near edges, ∇2u is evidently larger than
∇u, hence the minimum of (2) tends to have v ≈ 0 in these
regions. However, this is only an intuitive assumption, the
actual values of minimum v are located anywhere in the

range of [0,∇u]. Under the help of edge-aware variable v,
TGV automatically balances between first- and second-order
variations, instead of having fixed combination of them.
We refer the interested reader to [22], [26], [27] for further
discussions about TGV.

For a N-channel image u : Ω → RN, where u =
(u1, u2, . . . , uN), the vectorial TGV of u is formulated as

TGV(u) = min
v

{
α1

∫
Ω
‖∇u− v‖+ α0

∫
Ω
‖ξ(v)‖

}
, (3)

where ‖∇u − v‖ =
(∑N

i=1 |∇ui − vi|2
) 1

2 , and ‖ξ(v)‖ =∑4
j=1 ‖ξj(v)‖ =

∑4
j=1

(∑N
i=1 |ξj(vi)|2

) 1
2 . As we can see,

(3) can be applied to process multi-spectral images with the
special case N = 3 for RGB images.

4 DISCRETIZATION OF TOTAL GENERALIZED
VARIATION ON TRIANGULAR MESHES

In this section, we first introduce some basic notation. Then,
we elaborate on how to discretize TGV and its vectorial ver-
sion over triangular meshes. Finally, we discuss the related
work [8], [19] with our discretized TGV.

4.1 Notation

LetM be a compact triangulated surface of arbitrary topol-
ogy with no degenerate triangles in R3. The set of vertices,
edges, and triangles of M are denoted as {pi : i =
1, · · · ,P}, {ei : i = 1, · · · ,E}, and {τi : i = 1, · · · ,T},
respectively. Here P, E, and T are the numbers of vertices,
edges, and triangles ofM. If p is an endpoint of an edge e,
then we write p ≺ e. Similarly, e ≺ τ denotes that e is an
edge of τ , and p ≺ τ denotes that p is a vertex of τ .

We further define the relative orientation of an edge e
w.r.t. a triangle τ , denoted by sgn(e, τ), as follows. Assume
all triangles are with counterclockwise orientation, while all
edges are with randomly chosen orientations. For an edge
e ≺ τ , if its orientation is consistent with the orientation of
τ , then sgn(e, τ) = 1; otherwise sgn(e, τ) = −1.

4.2 Discretizing Total Generalized Variation

In order to describe piecewise constant data (e.g., face
normal field) on a triangular mesh M, we introduce the
piecewise constant function space. Given mesh M, we
define the space U = RT, which is isomorphic to the
piecewise constant function space on M. For example,
u = (u1, · · · , uT) ∈ U , where the value of u restricted to
triangle τ is uτ , sometimes written as u|τ for convenience.
In order to further describe function v (see the definition
of TGV (2)), we propose the edge function space V = RE,
whose elements are functions defined at the edges of M.
We sometimes also write ve as v|e, to denote the component
of v ∈ V , restricted to edge e. Sometimes, we also refer to
space V as the edge function space E .

We equip space U and V with the standard Euclidean
inner product and norm as follows. ∀ u1, u2, u∈U , we have:

(u1, u2)U =
∑
τ

u1|τu2|τarea(τ), ‖u‖U =
√

(u, u)U , (4)
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where area(τ) is the area of τ . ∀ v1, v2, v ∈ V , we have:

(v1, v2)V =
∑
e

v1|ev2|elen(e), ‖v‖V =
√

(v, v)V , (5)

where len(e) is the length of e.
As discussed in [12], it is natural to define the first-order

difference operator DM : U → V onM as

(DMu)|e =

{ ∑
τ,e≺τ

uτ sgn(e, τ), e 6⊂ ∂M

0, e ⊂ ∂M
, ∀e. (6)

The adjoint operator of DM, i.e., D?M : V → U , is given by

(D?Mv)|τ = − 1

area(τ)

∑
e≺τ,
e6⊂∂M

vesgn(e, τ)len(e), ∀τ. (7)

In the discrete case, for each triangle τ , there are three
first-order differences over the edges along three different
directions. Thus, we can approximate the gradient operator
in triangle τ as,

∇u|τ = (DMu|e1,τ ,DMu|e2,τ ,DMu|e3,τ ),

where ei,τ ≺ τ, i = 1, 2, 3. For convenience, we write the
discrete gradient as ∇u = (∂1u, ∂2u, ∂3u). It is natural to
denote the second-order gradient in τ as,

∇2u|τ =

 ∂1∂1u ∂1∂2u ∂1∂3u
∂2∂1u ∂2∂2u ∂2∂3u
∂3∂1u ∂3∂2u ∂3∂3u

 , (8)

where the diagonal entries ∂i∂iu, i = {1, 2, 3} are the
second-order directional derivatives in the same direction,
while the off-diagonal entries ∂i∂ju, i 6= j are the second-
order directional derivatives in two different directions.

To further discretize TGV, we need to define operators
in the edge function space E . For each triangle τ , v|τ =
(ve1,τ , ve2,τ , ve3,τ ) denotes the values of v restricted to the
three edges of τ . For brevity, the values of v in triangle τ
can be written as v|τ = (v1, v2, v3). Then, the gradient (in
three different directions) is given by

∇v|τ =

 ∂1v1 ∂2v1 ∂3v1

∂1v2 ∂2v2 ∂3v2

∂1v3 ∂2v3 ∂3v3

 , (9)

where ∂ivj is the first-order derivative. Note that ξ(v) =
1
2 (∇v + ∇vT ), the symmetrized tensor gradient ξ(v) in τ
can be directly derived as,

ξ(v)|τ =

 ∂1v1
∂2v1+∂1v2

2
∂3v1+∂1v3

2
∂2v1+∂1v2

2 ∂2v2
∂3v2+∂2v3

2
∂3v1+∂1v3

2
∂3v2+∂2v3

2 ∂3v3

 . (10)

In the following, we discretize the symmetrized tensor
gradient operator ξ(·), which is the core contribution of
this paper. As mentioned in Section 2, in smooth transition
regions, v has minimums whose values are close to ∇u.
Intuitively, this means,

v ≈ ∇u→ ∇v ≈ ∇2u→ ∂ivi ≈ ∂i∂iu, ∂ivj ≈ ∂i∂ju, (11)

where i, j = 1, 2, 3, ignoring the order of i and j. As
we can see from (9) and (10), we need two discretization
forms of first-order derivatives w.r.t. v (one for ∂ivi and the

other for ∂ivj). From (11), we can easily see that these two
discretizations also intuitively determine the second-order
derivatives w.r.t. u.

b

b

b b

b

b

τ

τ+

τ−

e+

e−
l

(a)

b

b

b

b

b

b

e

l1 l2

l4l3

(b)

Fig. 1: (a) Illustration for the definition of the 1-form oper-
ator DEv. [v] is the jump of v over line l plotted in cyan in
triangle τ with its barycenter plotted in red. (b) Illustration
for the definition of the adjoint operator D?Ew. B1(e) is a set
containing four lines associated with edge e.

Let l be the line segment connecting the barycenter and
a vertex of τ . Given v ∈ V , with the Neumann boundary
condition, we define the 1-form jump of v over l as

[v]l=

{
ve+sgn(e+, τ) + ve−sgn(e−, τ), e+ and e− 6⊂ ∂M,
0, e+ or e− ⊂ ∂M,

(12)
where e+ and e− are two edges sharing a common vertex
of l. e+ enters the common vertex in counterclockwise
direction, whereas e− leaves the common vertex in coun-
terclockwise direction. The two triangles sharing edges e+

and e− are denoted as τ+ and τ− respectively. All the
aforementioned descriptions are illustrated in Fig. 1a. Then,
the discrete 1-form operator DE is defined as

DE : V →W, (DEv)|l = [v]l, ∀l, for v ∈ V, (13)

where W = R3×T. The W space is equipped with the
following inner product and norm:

(w1, w2)W =
∑
l

w1|lw2|llen(l), ‖w‖W =
√

(w,w)W , (14)

where w1, w2, w ∈ W , and len(l) is the length of line l. The
adjoint operator of DE , that is D?E : W → V , can be derived
using the inner products in V and W . For w ∈ W , D?E has
the following form

(D?Ew)|e = − 1

len(e)

∑
l∈B1(e)

wlsgn(e, τl)len(l), ∀e, (15)

whereB1(e) is the set of lines associated with the edge e (see
Fig. 1b) and τl is the triangle containing the line l. Details
for the derivation of D?E can be found in lemma 1 in Part 1
of the supplementary material.

Remark 1. We give an intuitive interpretation of the
discrete 1-form operator DE . From (12) and (13), we can
see that the 1-form operator w.r.t. v depicts the variation of
v over the two adjacent edges. Moreover, this operator can
also be seen as an analogue of the second-order operator
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Fig. 2: Illustration of the second-order directional derivatives for a triangle (τ ).

w.r.t. u (in the same direction), which depicts

(DEv)|l =ve+sgn(e+, τ) + ve−sgn(e−, τ)

≈(uτ sgn(e+, τ) + uτ+sgn(e+, τ+))sgn(e+, τ)+

(uτ sgn(e−, τ) + uτ−sgn(e−, τ−))sgn(e−, τ)

=
(
uτ − uτ+

)
+
(
uτ − uτ−

)
=2uτ − uτ+ − uτ− .

(16)
In summary, the 1-form operator DEv can depict the first-
order variations of v, which can be seen as an approximation
of the first-order derivatives ∂ivi. Besides, this operator also
can describe the second-order variations of u, which can
be seen as an approximation of the second-order directional
derivatives ∂i∂iu, whose discretization on meshes is demon-
strated in Fig. 2.

b
b
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b b
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b

b

b

τ

τ+

τ++

τ−

τ−−

l
c

e+

e++

e−
e−−

c−

c+

Fig. 3: Illustration of the definition of 2-form operator D̃Ev.
[[v]] is the 2-form jump over curve c plotted in blue, which
passes through four edges (e−−, e−, e+, e++) and attaches
itself to line l. Auxiliary curve c− passing through (e−−, e+)
is plotted in green, and curve c+ passing through (e−, e++)
is plotted in purple.

Let c be a curve passing through four edges
(e−−, e−, e+, e++) and associates itself to the line l of τ .
For v ∈ V , we define the 2-form jump of v over c as

[[v]]c =[[v]]c− + [[v]]c+

=
(
ve−−sgn(e−−, τ−) + ve+sgn(e+, τ+)

)
+(

ve−sgn(e−, τ−) + ve++sgn(e++, τ+)
)
.

(17)

With Neumann boundary condition, if any of e−−, e−, e+,
e++ is on the boundary ∂M, we directly set [[v]]c = 0. The
triangle that shares edges e−− with τ− is denoted as τ−−,
while τ++ denotes the triangle that shares edge e+ with
τ+. The two auxiliary curves passing through (e−−, e+)
and (e−, e++) are denoted as c− and c+, respectively. We

demonstrate all aforementioned descriptions in Fig. 3. Then,
we define the 2-form operator D̃E as

D̃E : V → W̃ , (D̃Ev)|c = [[v]]c, ∀c, for v ∈ V, (18)

where W̃ = R3×T. The W̃ space is equipped with the
following inner product and norm:

(w̃1, w̃2)W̃ =
∑
c

w̃1|cw̃2|clen(c), ‖w̃‖W̃ =
√

(w̃, w̃)W̃ , (19)

where w̃1, w̃2, w̃ ∈ W̃ , and len(c) = 1
4

(
len(l−) + 2len(l) +

len(l+)
)

is an approximation of the length of c. l+ is the line
segment contained in triangle τ+ and shares the vertex with
l, while l− is the segment contained in τ−.

b

b

b

b

b

b

b

b

b

b

b

b bb

bb

b b

b

b

b

b

b

b

e

c1
c2

c3

c4

c5
c6

c7

c8

Fig. 4: Illustration of the definition of adjoint operator D̃?E w̃.
B2(e) is the set of curves associated with edge e, which
refers to eight curves. The attached lines of curves in B2(e)
are also shown.

Similarly, the adjoint operator of D̃E , that is D̃?E : W̃ →
V , is given by

(D̃?E w̃)|e = − 1

len(e)

∑
c∈B2(e)

w̃csgn(e, τc)len(c), ∀e, (20)

where B2(e) is the set of curves associated with edge e (see
Fig. 4), and τc is the triangle satisfying conditions e ≺ τc
and τc ∈ {τ+, τ−}. The derivation of D̃?E can be found in
lemma 2 in Part 1 of the supplementary material.

Remark 2. We give an intuitive interpretation of the 2-
form operator D̃E . From (17) and (18), we can see that the
2-form operator w.r.t. v describes the sum of variations of
v across edges (e−−, e+) and across edges (e−, e++). This
operator can also be seen as an analogue of the second-
order operator w.r.t. u (in different directions), which can
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be expressed as

(D̃Ev)|c =
(
ve−−sgn(e−−, τ−) + ve+sgn(e+, τ+)

)
+(

ve−sgn(e−, τ−) + ve++sgn(e++, τ+)
)

≈(uτ+ + uτ− − uτ − uτ−−)+

(uτ+ + uτ− − uτ − uτ++).

(21)

Intuitively, (21) can be used to depict both first-order deriva-
tives ∂ivj + ∂jvi and second-order directional derivatives
∂i∂ju + ∂j∂iu. We illustrate the discretization of second-
order directional derivatives ∂i∂ju+ ∂j∂iu in Fig. 2.

Note that with the 1- and 2-form operators (13) and (18),
the discrete symmetrized gradient operator ξ : V → W can
be directly approximated. Space W = R6×T is a composi-
tion of the spaces W and W̃ , and it is equipped with the
following inner product and norm:

(w1, w2)W = (w1, w2)W + (w̃1, w̃2)W̃ ,

‖w‖W = ‖w‖W + ‖w̃‖W̃ ,

with w1, w2, w ∈ W , w1, w2, w ∈ W , and w̃1, w̃2, w̃ ∈ W̃ .
Then, the second-order term of TGV can be expressed as

‖ξ(v)‖W =
∑
τ

(∑
i

‖∂ivi‖+
∑
i,j

‖∂ivj + ∂jvi‖
)

= ‖DEv‖W + ‖D̃Ev‖W̃ ,
(22)

where i, j = 1, 2, 3 and i 6= j. Given u ∈ U , with the above
definition, we now formulate the discretized TGV as

TGV(u) = min
v∈V

{
α1‖DMu− v‖V + α0‖ξ(v)‖W

}
, (23)

which defines the TGV semi-norm over meshes.
We can extend the TGV semi-norm (23) to the vectorial

case. To consider vectorial data, three vectorial spaces U, V,
and W are defined as

U = U × · · · × U︸ ︷︷ ︸
N

,V = V × · · · × V︸ ︷︷ ︸
N

,W = W × · · · ×W︸ ︷︷ ︸
N

,

for N-channel data. The inner products and norms in U, V,
and W are defined as follows:

(u1,u2)U =
∑

1≤i≤N

(u1
i , u

2
i )U , ‖u‖U =

√
(u,u)U,

(v1,v2)V =
∑

1≤i≤N

(v1
i , v

2
i )V , ‖v‖V =

√
(v,v)V,

(w1,w2)W =
∑

1≤i≤N

(w1
i , w

2
i )W , ‖w‖W =

√
(w,w)W,

with u1,u2,u ∈ U, v1,v2,v ∈ V, and w1,w2,w ∈ W.
Thus, all the aforementioned discrete operators can be eval-
uated channel by channel, and the vectorial TGV semi-norm
is then defined as

TGV(u) = min
v∈V

{
α1‖DMu− v‖V + α0‖ξ(v)‖W

}
. (24)

4.3 Differences between TV, HO and TGV
There are some existing works highly related to our dis-
cretized TGV. It is necessary to discuss the differences be-

tween our discretized TGV, total variation (TV) in [8], and
high-order variation (HO) in [19]. Given a signal u ∈ V ,
Zhang et al. [8] defined the discretized TV as

TV(u) = ‖DMu‖V , (25)

which describes the first-order variations over mesh edges.
TV (25) works exceptionally well in preserving sharp fea-
tures, but produces staircase artifacts in smooth regions.

To overcome the staircase artifacts of the TV regularizer,
Liu et al. [19] introduced a second-order difference operator
to discretize second-order derivatives, and propose second-
order variation as follows:

HO(u) =
∑
l

‖2uτ − uτ+ − uτ−‖len(l). (26)

HO (26) recovers smooth regions well, but blurs sharp
features in case of large noise.

Next, we discuss the differences between the second-
order term (22) of TGV and HO (26). From (16), we can see
HO(u) ≈ ‖DEv‖W . Therefore, HO (26) can be seen as an
analogue of the second-order derivative in the same direc-
tion (∂i∂iu). In other words, the HO regularizer minimizes
only the second-order variations in the same direction.
In contrast, the minimization of the second-order term of
TGV attempts to simultaneously minimize the second-order
variations in the same direction (∂i∂iu) as well as those in
different directions (∂i∂ju+ ∂j∂iu).

As mentioned earlier, TV is more effective than HO
in preserving sharp features, while HO handles smooth
regions better than TV. Until now, it has been challenging to
have one regularizer simultaneously preserve sharp features
in some parts of the mesh and recover smooth regions
in some other parts. To address this problem, we propose
the discretized TGV, which automatically balances the first-
and second-order terms via the auxiliary variable v. In
consequence, it combines the advantages from both TV and
HO, and manages to overcome their weakness. See Section
6 for more detailed comparisons.

5 MESH DENOISING USING VECTORIAL TGV
In this section, we first propose a vectorial TGV based
normal filter, and then design an algorithm to effectively
solve the optimization problem. After that, we reconstruct
vertex positions based on the optimized face normals.

5.1 Vectorial TGV based Normal Filter

Given a noisy mesh, we denote its face normal field as Nin.
In order to remove noise in Nin using vectorial TGV (24),
we formulate our normal filter as the following problem,

min
N,v

{β
2

∥∥N−Nin
∥∥2

U
+α1

∑
e

we‖(DMN−v)|e‖len(e)

+α0‖ξ(v)‖W
}
, s.t. ‖Nτ‖ = 1,∀τ,

(27)

where ‖ξ(v)‖W = ‖DEv‖W + ‖D̃Ev‖W̃. Note that N ∈ U
and U denotes 3-channel U . Weight we is given by

we = exp

(
−‖Ne,1 −Ne,2‖2

2σe2

)
, (28)
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where Ne,1 and Ne,2 are normals of the triangles sharing
edge e, and σe is a user-specified parameter. we is expected
to be large when ‖Ne,1 − Ne,2‖, the modulus of the first-
order normal difference defined on e, is small and vice versa.
Thus, it results in large weights for smooth regions, and
small weights for sharp features, and therefore allows the
proposed filter (27) to smooth non-features regions while
preserving sharp features.

The vectorial TGV (24) (applied to the face normal
field) can produce satisfactory denoising results in most
cases. However, it may oversmooth sharp features for some
meshes with large noise. Thus, we propose the dynamic
weighting (we) in our vectorial TGV based normal filter (27).
These weights are updated in each iteration, which enhance
the sparsity of the original vectorial TGV (24) for improved
sharp feature reconstruction. Essentially, these dynamically
adjusted weights penalize smooth regions more than sharp
features, which allows the lower-than-`1-sparsity effect to
be achieved [47].

5.2 Numerical Optimization
Due to the vectorial `1 semi-norm involved, problem (27)
has a non-differentiable objective which makes it difficult
to solve. Here, we use variable-splitting and augmented
Lagrange method (ALM) to solve (27), which has achieved
great success in solving `1 related problems [48], [49].

By introducing new variables P, Q, and Q̃, we reformu-
late (27) as a constrained optimization problem,

min
N,v,P,Q,Q̃

{β
2

∥∥N−Nin
∥∥2

U
+α1

∑
e

we‖Pe‖len(e)

+ α0‖Q‖W + α0‖Q̃‖W̃ + Ψ(N)
}
,

s.t. P = DMN− v, Q = DEv, Q̃ = D̃Ev,

where

Ψ(N) =

{
0, if ‖Nτ‖ = 1, ∀τ,

+∞, otherwise.

To solve the above constrained optimization problem, we
introduce the augmented Lagrangian function as follows,

L(N,v,P,Q, Q̃;λP, λQ, λQ̃) =
β

2

∥∥N−Nin
∥∥2

U

+ α1

∑
e

we‖Pe‖len(e) + α0‖Q‖W + α0‖Q̃‖W̃ + Ψ(N)

+ (λP,P− (DMN− v))V +
r1

2
‖P− (DMN− v)‖2V

+ (λQ,Q−DEv)
W

+
r0

2
‖Q−DEv‖2W

+ (λQ̃, Q̃− D̃Ev)
W̃

+
r0

2
‖Q̃− D̃Ev‖2W̃,

where λP, λQ, and λQ̃ are Lagrange multipliers, r1 and r0

are positive penalty weights.
Then we apply the variable-splitting technique and it-

eratively update the different set of variables in alternation
with the following five subproblems:
• The N-subproblem:

min
N

β

2
‖N−Nin‖2U + Ψ(N)

+
r1

2
‖DMN− v − (P +

λP
r1

)‖2V;
(29)

• The v-subproblem:

min
v

r0

2
‖DEv−(Q +

λQ
r0

)‖2
W

+
r0

2
‖D̃Ev−(Q̃ +

λQ̃
r0

)‖2
W̃

+
r1

2
‖DMN− v − (P +

λP
r1

)‖2V;

(30)
• The P-subproblem:

min
P

α1

∑
e

we‖Pe‖ len(e)+
r1

2
‖P−(DMN−v− λP

r1
)‖2V;

(31)
• The Q-subproblem:

min
Q

α0

∥∥Q∥∥
W

+
r0

2
‖Q− (DEv −

λQ
r0

)‖2
W

; (32)

• The Q̃-subproblem:

min
Q̃

α0

∥∥∥Q̃∥∥∥
W̃

+
r0

2
‖Q̃− (D̃Ev −

λQ̃
r0

)‖2
W̃
. (33)

The N-subproblem (29) is a quadratic optimization prob-
lem with the unit normal constraints. Here, we adopt an ap-
proximation strategy to solve this problem. We first ignore
the unit normal constraints and solve the quadratic pro-
gram, and then project the minimizer onto the unit sphere.
Specifically, we check the first-order optimality condition of
(29), and obtain the following Euler-Lagrange equation

βN− r1D?MDMN = βNin −D?M
(
λP + r1(P + v)

)
. (34)

Plugging in the first-order operator (6) and its adjoint oper-
ator (7), we can rewrite the above equation as a sparse and
positive semidefinite linear system, which can be solved by
efficient sparse linear solvers, such as TAUCS and Intel Math
Kernel Library (MKL).

The v-subproblem (30) is also a quadratic program,
whose Euler-Lagrange equation is given as

r1v−r0D
?
EDEv−r0D̃?ED̃Ev = −λP − r1(P−DMN)

−D?E(λQ+r0Q)− D̃?E(λQ̃+r0Q̃).
(35)

Plugging the 1- and 2-form operators (13) and (18) and their
adjoint operators (15) and (20), we can rewrite the above
equation as a sparse linear system, which again can be
solved by linear solvers.

The P-subproblem (31) is solved directly as it can be
spatially decoupled, where the minimization problem for
each edge is solved separately. For each Pe, we have the
following simplified problem:

min
Pe

α1we‖Pe‖+
r1

2
‖Pe −

(
(DMN)|e − ve −

λPe
r1

)
‖2,

which has a closed form solution:

Pe = Shrink(α1we, r1, (DMN)|e−ve−
λPe
r1

), (36)

with the soft shrinkage operator defined as:

Shrink(x, y, z) = max(0, 1− x

y‖z‖
)z.

The Q-subproblem (32) is solved for each line indepen-
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dently. For each Ql, we solve the following problem:

min
Ql

α0

∥∥Ql

∥∥+
r0

2
‖Ql −

(
(DEv)|l −

λQl

r0

)
‖2,

whose closed form solution is:

Ql = Shrink(α0, r0, (DEv)|l −
λQl

r0
). (37)

Similarly, the Q̃-subproblem (33) can be separated into
the following problem for each curve Q̃c:

min
Q̃c

α0

∥∥∥Q̃c

∥∥∥+
r0

2
‖Q̃c −

(
(D̃Ev)|c −

λQ̃c

r0

)
‖2,

which has a closed form solution:

Q̃c = Shrink(α0, r0, (D̃Ev)|c −
λQ̃c

r0
). (38)

Fig. 5: Denoising results of Dodecahedron (corrupted with
σ = 0.3l̄e, where σ is standard deviation of Gaussian noise
and l̄e is mean edge length). From left to right: noisy mesh,
denoising results produced by vectorial TGV normal filter
(27) without and with dynamic weights, respectively.

In summary, the full procedure for the TGV normal filter
(27) is sketched in Algorithm 1. Based on variable-splitting
and ALM, this algorithm iteratively solves the above five
subproblems and updates the Lagrange multipliers. The
algorithm terminates when one of the stopping criteria is
met. As mentioned in section 5.1, the dynamic weights we
play a key role in recovering sharp features. As Fig. 5 shows,
without these dynamic weights, some sharp features are
blurred in the denoised result.

5.3 Vertex Updating Scheme

After smoothing the normal field via the proposed TGV-
based normal filter, vertex positions should be updated to
match the filtered normals. To avoid the triangle orienta-
tion ambiguity problem in the traditional vertex updating
scheme [4], we reconstruct the mesh using the vertex updat-
ing scheme proposed by Zhang et al. [37]. We empirically fix
the iteration number as 30 in our experiments, which allows
producing satisfactory results. We refer the interested reader
to the work [37] for more details.

6 EXPERIMENTS AND DISCUSSIONS

We test the proposed denoising method on a variety of
meshes including CAD, non-CAD, and scanned data. The

Algorithm 1: ALM for TGV normal filtering (27)

Initialization: N−1 = v−1 = P−1 = Q
−1

= Q̃−1 =
0, λ0

P = λ0
Q

= λ0
Q̃

= 0, k = 0;
repeat

1. fix (vk−1,Pk−1, λkP), solve Nk by (34);
normalize Nk;

2. fix(Nk,Pk−1,Q
k−1
,Q̃k−1,λkP, λ

k
Q
, λk

Q̃
), solve vk

by (35);
3. fix (Nk,vk, λkP), solve Pk by (36);

4. fix (vk, λk
Q

), solve Q
k

by (37);

5. fix (vk, λk
Q̃

), solve Q̃k by (38);
6. update Lagrange multipliers
λk+1
P = λkP + r1

(
Pk − (DMNk − vk)

)
;

λk+1

Q
= λk

Q
+ r0(Q

k −DEvk);

λk+1

Q̃
= λk

Q̃
+ r0(Q̃k − D̃Evk);

7. update weights we using (28) ;
8. Increment k: k = k + 1;

until ‖Nk −Nk−1‖2U < 1e− 10 or k ≥ 100;
return Nk.

tested meshes are corrupted by either synthetic or raw noise.
The synthetic noise is generated by a zero-mean Gaussian
function with mean edge length (l̄e) as the standard de-
viation (σ). We present visual and numerical comparisons
between the proposed method (TGV) and the state-of-the-
art, including the total variation filter (TV) [8], the high-
order filter (HO) [19], `0 minimization (L0) [42], the bilateral
filter (BF) [5], the non-local low-rank filter (NLLR) [13], and
the cascaded filter (CNR) [16]. We implemented TV, HO,
L0, and BF according to the literature in C++. For NLLR,
we execute the code kindly provided by the authors of
[13] to produce the results. For CNR, we directly use the
trained neural networks kindly provided by the authors [16]
to generate the results. We carefully tune the parameters
of each competing methods so that satisfactory results are
produced. All the methods are performed on a laptop with
an Intel i7 dual core 2.6 GHz processor and 16 GB RAM.
All the meshes are rendered in flat-shading to emphasize
faceting effect. To promote reproducibility, we release our
executable program and data in the GitHub page 1.

6.1 Parameters Setting

Our TGV filter (27) has three parameters, i.e., α1, α0, and
β, which balance the first-, second-order, and fidelity terms
of (27). When the parameters are chosen properly, on one
hand, in smooth regions we have v ≈ DMN, which results
in the first-order term being close to vanishing. Thus, the
minimization of (27) is mainly controlled by the second-
order term in these smooth regions; see the corresponding
regions in Figs. 8b and 8c. On the other hand, in regions near
sharp features, we have v ≈ 0, which causes the second-
order term to be close to vanish. Thus, the minimization
mainly depends on the first-order term in these regions; see
the corresponding regions in Figs. 8b and 8c.

1. https://github.com/LabZhengLiu/MeshTGV
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(a) Noisy (b) α1 = 0.05 (c) α1 = 0.4 (d) α1 = 0.7 (e) α1 = 2.0

Fig. 6: Denoising results for varying α1 with fixed α0 and β. From left to right: noisy mesh (corrupted with σ = 0.1l̄e), and
results with increasing α1.

(a) Noisy (b) α0 = 0.01 (c) α0 = 0.03 (d) α0 = 0.05 (e) α0 = 1.0

Fig. 7: Denoising results for varying α0 with fixed α1 and β. From left to right: noisy mesh (corrupted with σ = 0.15l̄e),
and results with increasing α0.

(a) Input (Result) (b) DMN

0.35

0

(c) v

Fig. 8: (a) Noisy input (Denoising result). (b) DMN of the
result visualized using color coding. (c) The visualization of
v of the result.

Parameter α1 controls the impact of the first-order term
in (27). For each noisy mesh, these exist a range ([0.5, 3.0])
for α1, that leads to promising results. This indicates that
our method is insensitive to the perturbation of α1; see
Figs. 6c and 6d. If α1 is too small, the first-order term gets
practically ignored causing v ≈ 0 over the whole mesh,
which in turn causes the second-order term being close
to vanish. Therefore, the TGV regularizer fails, leading to
residual noise in the result; see Fig. 6b. If α1 is too large,
in regions near sharp features, the first-order term tends
to have v ≈ DMN, and the minimization of (27) will be
controlled by the second-order term in these regions, which
may smooth sharp features; see Fig. 6e.

Parameter α0 influences the effect of the second-order
term in (27). Similar to α1, for each noisy mesh, there exist a
range ([0.05, 1]) for α0 that can produce satisfactory results;
see Figs. 7c and 7d. Underweighting the second-order term

leads to residual noise in the result; see Fig. 7b. In contrast,
overweighting the second-order term will penalize smooth
regions as well as fine features and therefore oversmooth
the details; see Fig. 7e.

Parameter β controls the degree of denoising procedure.
It is empirically fixed as 100 for CAD and scanned surfaces
usually, and is fixed as 1000 for non-CAD surfaces.

6.2 Qualitative Performance

Denoise CAD surfaces. In Fig. 9, we present the denoising
results on a CAD surface containing both sharp features
and smooth regions. It can be seen that, except for BF and
NLLR, all the other testing methods preserve sharp features
to some extent. As both geometric features and noise belong
to high frequency information, BF and NLLR cannot distin-
guish them, especially for sharp features, and as a result,
some features are treated as noise and get blurred; see Figs.
9e and 9f. CNR, the learning-based method, performs well,
however, it induces artifacts near sharp features; see Fig.
9g. We observe that, sparse optimization based methods, in-
cluding TV, HO, TGV, and L0, preserve sharp features more
accurately. However, due to its higher sparsity requirement,
L0 flattens some smooth regions and induces false features
in smooth regions sometimes, as Fig. 9d shows. In contrast,
TGV is free from these artifacts in smooth regions, which
makes it an significant improvement over TV; see Figs. 9b
and 9h. Compared to HO, TGV recovers sharp features and
flat regions more accurately; see Fig. 9c. For each testing
method, we also visualize the error map for the normals,
where the error is defined as the angular difference between
the filtered normals and the ground truth. The normals
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20°

0

(a) Noisy (b) TV (c) HO (d) L0 (e) BF (f) NLLR (g) CNR (h) Ours

Fig. 9: Comparison of denoising results of Block, corrupted with σ = 0.35l̄e. The second row visualizes the corresponding
error maps, using the angular difference between face normals of denoised meshes and ground truth meshes.

(a) Noisy (b) TV (c) HO (d) L0 (e) BF (f) NLLR (g) CNR (h) Ours

Fig. 10: Comparison of denoising results of Fandisk, corrupted with σ = 0.25l̄e.

produced by our method are noticeably closer to the ground
truth; see the second row of Fig. 9.

In Fig. 10, we compare the results for a CAD surface
including sharp features and shallow edge. Again, BF and
NLLR blur sharp features in varying degrees, while L0
flattens smooth regions and produces false features; see
Figs. 10e, 10f, and 10d. As TV applies only to the first-order
information, it suffers from staircase artifacts in smoothly
curved regions; see Fig. 10b. HO recovers smooth regions
more accurately than TV. However, as HO only uses high-
order information, it bends straight-line edges and blurs
shallow features; see the zoomed-in view of Fig. 10c. Hence
TV and HO are effective in preserving either sharp features
or smooth regions, but not both. In contrast, TGV combines
the advantages from both methods and accurately recovers
both sharp features and smooth regions; see Fig. 10h. Visual
comparisons for this example show the superior perfor-
mance of TGV in simultaneously preserving features and
recovering smooth regions.

Denoise non-CAD surfaces. Fig. 11 shows a comparison
on a non-CAD surface with rich geometric features. As
expected, TV over-smoothes some small-scale features, and
exhibits slight staircase artifacts. L0 makes this situation
even worse by transforming smooth regions into piecewise
constant ones while over sharpening medium-scale features;
see Fig. 11d. HO and CNR are effective in preserving
medium-scale features; see the torch in Figs. 11c and 11g.
But they may smooth small-scale features and fine details;

see the hand regions in Figs. 11c and 11g. In contrast,
NLLR and our method TGV produce visually compelling
results. Furthermore, from Table 1, we can see our method
achieves higher numerical accuracy than NLLR. Therefore,
our method produces appealing results with geometric fea-
tures recovered better than all competing methods.

Fig. 12 compares the results on a non-CAD surface con-
taining multi-scale features. As expected, comparing to the
other methods, NLLR, CNR, and our method TGV recover
different levels of features in a better manner. NLLR may re-
tain some extra noise in the result, while CNR slightly blurs
small-scale features. In contrast, TGV produces visually the
best result with most geometric features well preserved.

Overall, for non-CAD meshes, our method TGV gener-
ates satisfactory results with features recovered better, and
at the same time it prevents introducing additional artifacts
(e.g., staircase artifacts, over-smoothing, over-sharpening
effects, extra noise).

Denoise scanning data. We also compare the different
methods on scanned data, where the noise pattern is un-
known. Fig. 13 shows the results for data acquired by a laser
scanner. First, TV, L0, and CNR over-smooth fine details
while sharpen some features, which makes the results look
less natural (see the zoomed-in views of Figs. 13b, 13d, and
13g). In contrast, HO and BF blur details to varying degrees.
In this example, the results produced by NLLR and our
method TGV look more natural and compelling than those
produced by the other methods; see Figs. 13f and 13h. Our
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(a) Noisy (b) TV (c) HO (d) L0 (e) BF (f) NLLR (g) CNR (h) Ours

Fig. 11: Comparison of denoising results of Lucy, corrupted with σ = 0.2l̄e.

(a) Noisy (b) TV (c) HO (d) L0 (e) BF (f) NLLR (g) CNR (h) Ours

Fig. 12: Comparison of denoising results for Gargoyle, corrupted with σ = 0.25l̄e.

(a) Noisy (b) TV (c) HO (d) L0 (e) BF (f) NLLR (g) CNR (h) Ours

Fig. 13: Comparison of denoising results for scanned data acquired by a laser scanner.

result is free of visible artifacts and almost does not lose any
features from the underlying surface.

In Fig. 14, we examine the performance of our method
on meshes acquired by the Kinect sensor. These scanned
meshes are provided by Wang et al. [16]. As can be seen,
all the competing methods remove noise effectively, except
for BF which cannot distinguish features and noise clearly.
TV and L0 produce staircase artifacts in smooth regions
and sharpen curved features; see Figs. 14b and 14d. This
phenomenon is more severe for L0. Although HO does a
good job in smooth regions, it slightly blurs small-scale
features. NLLR and CNR yield visually excellent results,
although they induce some small bumps in smooth regions.
In contrast, our method outperforms the other methods in
preserving features and recovering smooth regions, while

preventing visible artifacts.
Overall, in all the meshes being tested, our results

present visually cleaner geometric features without notice-
able artifacts. Hence, our method has succeeded in simulta-
neously recovering smoothly curved regions and preserving
sharp features, even in the presence of heavy noise.

6.3 Quantitative Evaluation
To quantitatively evaluate the quality of the denoising re-
sults, we adopt the mean angular difference, abbreviated as
θ, as an error metric. This error metric is widely used in
recent work [16], [13], [18]. It measures the mean angular
difference (θ) of normals between the clean mesh and the
denoised result. For fair comparison, we compute θ after
the filtering step for each testing method (except L0). Table
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(a) Noisy (b) TV (c) HO (d) L0 (e) BF (f) NLLR (g) CNR (h) Ours

Fig. 14: Comparison of denoising results for scanned data acquired by Kinect.

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0

TV HO L0 BF NLLR CNR Ours

Block

Fandisk

7.0

8.0

9.0

10.0

11.0

12.0

13.0

TV HO L0 BF NLLR CNR Ours

Lucy

Gargoyle

6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5
11.0

TV HO L0 BF NLLR CNR Ours

Pyramid
Cone
Boy

Fig. 15: Error plots of mean angular difference (θ) of the results in Figs. 9, 10, 11, 12, and 14, for all competing methods.

1 lists the error metric θ for all competing methods, and Fig.
15 further shows θ as polyline plots. The mesh sizes of the
tested surfaces in Table 1 are listed in Table 2. As we can see
from Table 1, our method TGV produces highly competitive
results. More specifically, for CAD surfaces, our method out-
performs the other methods in comparison in the sense that
the θ values are significantly smaller; see the first column
of Fig. 15. That is consistent with the visual comparisons in
Figs. 9 and 10. For non-CAD surfaces, it is not surprising
that our method gives θ values lower than the competing
methods, indicating that our results are more faithful to the
ground truth. Visually, results from our method and NLLR
look almost identical in Fig. 11. For scanned data, NLLR
exhibits slightly better performance than our method in the
Boy example, even though the results look almost identical.
However, in the other two examples (Cone and Pyramid),
our method shows better performance in terms of θ values;
see the third column of Fig. 15.

To further evaluate the vertex deviation from the ground
truth, we use the vertex-based Hausdorff distance [8], [14] to
measure the position error between the denoised mesh and
the ground truth. The results are listed in Table. 1. As can

be seen, for CAD and non-CAD surfaces, our method TGV
outperforms the other methods in most cases. For scanned
data, CNR shows better performance.

Overall, the quantitative comparisons show that our
method is more effective in recovering shape details, includ-
ing sharp features, multi-scale features, and smooth regions,
from the noisy input, leading to the least amount of error in
most cases, in comparison to the other methods. It is worth
noting that our method performs favorably on all types of
the tested meshes (CAD, non-CAD, and scanned meshes)
rather than having a peak performance on specific types.

Computational time. We list the execution time of each
method in Table 1. As we can see, CNR is the fastest
method, thanks to its pre-trained neural networks. BF is
slower than CNR, but significantly faster than the other
methods. L0 is the slowest for synthetic meshes, while
NLLR is the slowest for scanned data. Our method takes
more execution time than TV and HO. Furthermore, we
adopt the conjugate gradient (CG) method to iteratively
solve our two linear systems (one for N-subproblem and the
other for v-subproblem), and found that the runtime can be
reduced by decreasing the number of iterations, trading off
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TABLE 1: Quantitative evaluation of the results in Figs. 9, 10, 11, 12, and 14. For each result, we list mean angular difference
θ (in degrees), vertex-based mesh-to-mesh error Ev (×10−2) and the execution time (in seconds).

Mesh TV HO L0 BF NLLR CNR TGV

Block 3.12, 2.01; 1.44 2.90, 1.70; 2.03 4.35, 2.15; 13.3 5.30, 1.80; 1.07 11.7, 2.44; 10.4 2.63, 0.86; 0.71 1.88, 0.95; 6.28
Fandisk 2.62, 2.39; 0.88 3.67, 1.67; 1.88 3.92, 2.17; 6.73 5.51, 1.62; 0.61 8.21, 1.57; 3.64 2.31, 1.47; 0.55 2.20, 1.20; 3.08
Lucy 9.88, 0.38; 30.9 9.63, 0.61; 60.1 13.0, 0.72; 87.6 8.86, 0.50; 8.80 8.64, 0.36; 67.5 7.91, 0.30; 10.5 7.34, 0.26; 66.6
Gargoyle 10.8, 0.59; 13.7 9.72, 0.67; 20.3 12.0, 0.63; 55.5 9.94, 2.22; 4.70 8.96, 1.58; 30.5 8.36, 0.77; 6.51 7.86, 0.54; 49.8
Pyramid 6.79, 4.69; 1.28 7.18, 4.23; 1.93 6.50, 3.47; 8.03 8.45, 4.45; 0.77 9.27, 3.41; 104.2 6.40, 3.38; 0.76 6.19, 4.52; 4.14
Cone 7.45, 3.98; 4.48 7.41, 3.33; 7.91 7.80, 3.45; 47.7 8.16, 2.96; 3.59 7.63, 3.04; 312.8 7.11, 2.78; 1.82 6.96, 3.57; 30.1
Boy 9.16, 6.08; 10.2 8.98, 5.66; 17.3 9.42, 6.04; 88.5 10.0, 6.19; 12.3 8.88, 5.97; 409.1 8.97, 6.07; 4.93 8.91, 5.94; 55.8

TABLE 2: Mesh sizes for the surfaces in Table 1

Mesh Block Fandisk Lucy Gargoyle Pyramid Cone Boy

|V | 8.8K 6.5K 149.3K 85.6K 6.6K 31.2K 76.9K
|F | 17.6K 12.9K 298.5K 171.1K 12.6K 61.3K 152.2K

accuracy. Furthermore, since the coefficient matrices of the
two linear systems stay fixed during the iteration, they can
be pre-factorized and thus the runtime of the full algorithm
is still acceptable.

Overall, our method produces much better results in
terms of visual quality and error metrics in most cases,
although it seems to be computationally more intensive,
hence using modern GPUs and multi-core CPUs to speed
up our method is one further direction.

(a) Noisy (b) AT (c) MSTV (d) HLO (e) Ours

Fig. 16: Comparison of denosing results of Child and Joint,
corrupted with σ = 0.2l̄e.

TABLE 3: Quantitative evaluation of the results in Fig. 16
for AT [12], MSTV [12], HLO [34], and our method TGV. For
each result, we list mean angular difference θ (in degrees),
vertex-based mesh-to-mesh error Ev (×10−2) and the exe-
cution time (in seconds).

Mesh AT MSTV HLO TGV

Child 7.61, 0.62; 3.80 7.22, 0.55; 7.06 7.93, 0.69; 1.31 6.29, 0.48; 25.9
Joint 1.89, 0.79; 2.84 1.99, 0.81; 2.75 6.06, 2.15; 0.34 1.45, 0.70; 12.4

6.4 TGV vs. AT, MSTV, and HLO

To further demonstrate the effectiveness of TGV, we com-
pare it to the Mumford-Shah methods (AT and MSTV) in
[12] and the Laplacian diffusion method (HLO) in [34]. As
Fig. 16 shows, for non-CAD meshes containing different lev-
els of features, AT and TGV produce visually better results.
MSTV suffers from staircase artifacts, while HLO tends to
smooth weak features. For CAD meshes, all methods, except
HLO, recovers sharp features in the tested noise level. How-
ever, AT causes some bumping in flat regions, while MSTV
suffers from staircase artifacts in smooth regions. In contrast,
TGV produces visually more compelling results which are
free of noticeable artifacts. As we can see in Table 3, for
both CAD and non-CAD meshes, the TGV results show
the lowest error values, indicating that TGV outperforms
the other three competing methods (AT, MSTV and HLO)
numerically. Table 3 also lists the CPU execution time for the
four methods. We can see that HLO is the fastest method,
while TGV is the slowest.

6.5 TGV vs. DNF-Net

Li et al. [18] recently proposed an end-to-end deep normal
filtering network, named DNF-Net, which has received
wide attention. In Fig. 18, we compare TGV with DNF-Net
on three meshes (Sharpsphere, Carter, and Cone04). To fur-
ther visualize the mean angular difference (θ) distribution
for the tested meshes, we show the histogram of θ in Fig. 17.
For the mesh containing sharp features and smooth regions
(Sharpsphere), our method clearly outperforms DNF-Net
in terms of visual quality and the error metric θ; see the
top row in Fig. 18. For CAD mesh (Carter), both methods
produce excellent feature-preserving results. Nevertheless,
the θ value of our result is lower than that of DNF-Net;
see the middle row in Fig. 18. For scanned mesh (Cone04),
the DNF-Net result has θ value lower than ours, however
it contains bumps in smooth regions. In contrast, our result
does not show such artifact, hence we believe visually, our
result is better; see the last row in Fig. 18. Moreover, as Fig.
17 shows, TGV consistently produces high quality results
that contain more θ in the range of [0◦, 2◦]. Therefore, we
argue that TGV performs favorably against DNF-Net.

6.6 Discussions

In the following, we discuss the performance of our method
in various aspects, including efficacy for irregular sampling,
robustness against different levels of noise, and robustness
on sampling density (mesh resolution).
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Fig. 17: Histograms of mean angular difference (θ) of the results in Fig. 18. The horizontal axis denotes θ (in degrees), while
the vertical axis denotes the ratio of faces falling in the fixed range of θ.
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Fig. 18: Comparison between DNF-Net [18] and our method
TGV. From left to right: input noisy meshes, denoising
results produced by DNF-Net and ours. The corresponding
error maps, using the mean angular difference between the
face normals of denoised meshes and ground truth meshes,
are also demonstrated.

Irregular sampling. As we have rigorously defined
the discrete operators used in our TGV normal filter (27),
our method is robust against non-uniform sampling. We
demonstrate the robustness of our method against irregular
sampling in Fig. 19. As we can see, although the noisy
meshes are of varying density distributions, the obtained
results still show compelling quality.

Stress test. A stress test of our method with increasing
level of noise is presented in Fig. 20. As can be seen, when
the noise level is moderate, our method can remove noise
effectively, while preserving sharp features and simultane-
ously recover smooth regions. Moreover, our method can
preserve sharp features even for the mesh under the highest
level of noise; see Fig. 20c. However, when the noise level
increases to be larger than the feature size, our method fails

Fig. 19: Denoising results for noisy input with non-uniform
sampling. From left to right: input noisy meshes, denoising
results, and the corresponding clean meshes.

(a) σ = 0.2l̄e (b) 0.4l̄e (c) 0.6l̄e (d) 0.75l̄e

Fig. 20: Denoising results of Part, which is corrupted by
different levels of noise. The top row shows the mesh after
being corrupted with increasing level of noise, while the
bottom row shows the corresponding denoising results.

to produce satisfactory results; see Fig. 20d.
Sampling density. A robustness test of our method for

varying mesh resolution is shown in Fig. 21. When the
mesh resolution decreases, the θ value of our results does
not change significantly for CAD mesh (Part) or scanned
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Fig. 21: Error plot of mean angular difference (θ) for three
meshes (Part, Bunny, Cone) under different resolutions. All
the meshes are corrupted by Gaussian noise with σ = 0.1l̄e.
The horizontal axis denotes the number of faces in the
meshes, while the vertical axis denotes the θ value.

data (Cone). For non-CAD mesh (Bunny), there is a slight
jump of θ in the case of low-resolution, yet, overall it is
still reasonable. Thus, our method is robust against mesh
resolution.

7 CONCLUSION

In this work, we present a numerical framework to dis-
cretize TGV for triangular meshes. A normal filter based
on vectorial TGV is proposed to smooth normal fields on
meshes. The optimization problem for the proposed filter is
efficiently solved by variable-splitting and the augmented
Lagrangian method. Then, vertex positions are updated to
match the filtered normal field. We carefully evaluate our
method in various aspects and compare it to the state-of-
the-art methods. Extensive experimental results show that
our method has significant advantages in preserving sharp
features, recovering smooth transition regions, as well as
preventing various artifacts (e.g., staircase artifacts, over-
smoothing or over-sharpening effects, and extra noise). In
summary, our method is highly effective for denoising CAD
and man-made surfaces that contain sharp features and
smooth transition regions.

There are many interesting directions for future research.
The proposed discretized TGV operator can be applied to
other geometry processing problems, such as mesh segmen-
tation, reconstruction, simplification, feature detection, etc.
Furthermore, we plan to investigate the possibility to extend
our method to point clouds.
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